Die Zukunft vorhersagen mit Predictive Analytics

    Wissensbeitrag

    Für Unternehmen gilt es heutzutage mehr denn je, nicht nur in der Gegenwart gut aufgestellt zu sein, sondern auch einen Blick in die Zukunft zu wagen. Mit fortschreitender Umstellung auf Industrie 4.0 und der vermehrten Kommunikation vernetzter Systeme steigt auch die Notwendigkeit dazu, interne Prozesse besser nachzuverfolgen. Ziel davon ist es, aus den Erfahrungen der Vergangenheit bessere Aussagen für die Zukunft treffen zu können, die Qualität der Prozesse zu erhöhen und auf Ereignisse insgesamt schneller und auf Basis aussagekräftiger Daten reagieren zu können.

    Bei einem unserer Kunden aus der Automotive Branche hatten wir kürzlich ein Projekt, in dem Predictive Analytics zum Einsatz kamen. Durch das von uns implementierte Analyseverfahren kann das Unternehmen nun gezielter vorhersagen, wann für die einzelnen Maschinen in einer Produktionskette eine Wartung notwendig wäre. Das Unternehmen verringert damit deutlich Ausfallwahrscheinlichkeiten in der Produktionskette.

    Erhöhter Qualitätsanspruch des Kunden

    Unser Kunde ist Zulieferer für einen namhaften Automobilhersteller, der hohe Qualitätsanforderungen an seine Produktionsprozesse stellt, um diese zu optimieren und Produktionskosten zu senken. Um dies zu gewährleisten sollen in allen Prozessschritten Daten ausgewertet werden, die eine Aussage über die Qualität produzierter Werkstücke und den Zustand von Produktionsmaschinen zulassen. Durch dieses Tracking könnten Arbeitsschritte in Echtzeit angepasst werden, wodurch der Ausschuss der Produkte und die Ausfallquote der Maschinen verringert werden.

    Mehr zum Projektverlauf

    Ausgangssituation

    Unser Kunde stellt die in der Produktionsstraße des Automobilherstellers verwendeten Maschinen her. Die hohen Anforderungen des Automobilherstellers machen es nötig, alle Maschinen mit Sensoren auszustatten die alle betriebsrelevanten Parameter messen und entsprechende Daten ausgeben.

    Im ersten Projektschritt sollte nun der Verschleißgrad der Maschine bestimmt werden, um diese abzuschalten, bevor ein kritischer Punkt überschritten wird. In späteren Versionen sollte die Datenanalyse präzise vorhersagen, ob das Werkstück getauscht werden muss oder ob beispielsweise eine Erneuerung des Schmiermittels ausreicht.

    Unsere Lösung
    Benefits für den Kunden

    Fazit

    Predictive Analytics findet in vielen Bereichen Anwendung, in denen aus vorhandenen Daten genaue Vorhersagen für die Zukunft getroffen werden können. Und wer die Zukunft kennt, ist immer einen Schritt voraus. Wollen Sie ebenfalls mit Predictive Analytics einen Blick in die Zukunft werfen? Dann kontaktieren Sie uns! Wir beraten Sie gerne.

    Autor

    Maximilian Lorse
    X-INTEGRATE Software & Consulting GmbHKontakt